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Abstract 
In present article a brief overview is presented on spectral vegetation indices and methods 

for estimation of crop main biophysical variables and their proxies. The main VIs used in estimation 
of nitrogen and chlorophyll, biomass, LAI and fAPAR, fCover, and photosynthesis are summarized. 
 
 

Biophysical variables and vegetation indices 
 

A number of techniques have evolved to derive the biophysical variables of 
vegetation using remote sensing data; these can be grouped into three broad 
categories: the inversion of radiative transfer models [39], machine learning (for 
example neural networks) [4] and the use of vegetation Indices. There are generally 
few ways of deriving the biophysical estimates using empirical or semi-empirical 
relationships: 1) single regression; 2) stepwise linear regression; 3) partial least 
squares (PLS) regression; 4) artificial neural networks [12]. Methods based on 
vegetation indices (VIs) have the benefit of being computationally simple while 
they are generally less site specific and more universally applicable than the other 
methods. The performance of the different indices and selected "optimal" 
wavebands depends on vegetation and land cover type, the variables to be 
retrieved, sun/view geometry to name but a few [12]. Satellite spectral data has the 
potential to measure the reflected radiation from many plants, thus making 
assessment of biophysical variables feasible on canopy level. The regression 
models relate in situ measurements and VIs. The VIs are mathematical 
transformations of the original spectral reflectance that are designed to reduce the 
additive and multiplicative errors associated with atmospheric effects, solar 
illumination, soil background effects, and sensor viewing geometry [29]. 

 
 
 



73 
 

Nitrogen and chlorophyll estimation 
 

Nitrogen is of particular interest in ecological and agricultural studies, 
because nitrogen availability can affect the rate of key ecosystem processes, 
including primary production [43]. Nitrogen has traditionally been considered one 
of the most important nutrients. It is an essential component of the proteins that 
build cell material and plant tissues. In addition, it is necessary for the function of 
other essential biochemical agents, including chlorophylls A and B; chloroplast 
enzymes of the Calvin cycle which are dominated by ribulose-1,5-bisphosphate 
carboxylase oxygenase (RuBisCO); high energetic compounds such as ATP and 
NADPH [15]; and the nucleic acids DNA and RNA. Nitrogen is often the most 
important determinant of plant growths and crop yield.  
The productivity and dynamics of unmanaged terrestrial, most agricultural and 
forestry ecosystems are limited by the supply of biologically available nitrogen 
[43]. Although an artificial supply of nitrogen to crops is fundamental to optimize 
crop yields, mismanagement of N and its excessive application, causes many 
negative effects which have dramatically altered the global nitrogen cycle [32]. The 
effect of anthropogenic activities on the N cycle has been addressed to some extent. 
Europe has had some success using rules and fines to modify the fertilizer and 
animal farm waste. Educational programs need to be further developed to modify 
human behavior including the way farmers manage N fertilizers in their farms [42]. 
This challenge requires knowledge about the crop status. 

On the other hand, chlorophyll content can directly determine the 
photosynthetic potential and primary production [16]. Chlorophylls can give an 
indirect estimation of the nutrient status, because part of the leaf nitrogen is 
incorporated in chlorophyll. Despite the relatively low N content of chlorophyll  
(4 mol /mol-1), strong correlations are found between chlorophylls and nitrogen in 
green leaves, because of the large amount of protein that complexes the 
photosynthetic pigment [15]. Furthermore, leaf chlorophyll content is indicative for 
health status evaluation and is closely related to plant stress [33]. 
 

Vegetation indices for chlorophyll and nitrogen estimation 
 

A large number of spectral indices have been developed to measure 
chlorophyll content and nitrogen content. They were considered as a good 
estimator of these properties. The two variables are highly correlated; thus, they 
will be accessed with the same set of VIs. Still there are indices which better 
correlate with nitrogen and as well indices that better correlate with chlorophyll 
concentrations. The chlorophyll indices are utilizing the bands in the red-edge 
position which was proved by previous research [6–10, 28] to be particularly 
suitable for chlorophyll estimation. Because of the strong correlation between 
chlorophyll and nitrogen these indices are suitable for nitrogen as well. 
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The SWIR bands are often mentioned in scientific literature as sensitive 
directly to nitrogen concentration. One of the Sentinel-2 main improvements over 
sensors as for instance Landsat TM, SPOT etc., are the bands centered on the Red 
Edge position. There are two Red Edge bands which are cantered at 705 nm and 
740 nm with band width of 15 nm. These wavelengths are essential for estimating 
biochemical quantities [9]. Most of the indices mentioned in the literature are 
developed initially as hyperspectral indices and cannot be calculated with the exact 
wavelengths as mentioned in the literature, as they require very specific bands, 
most of the cases not available by the Sentinel-2 MSI sensor bands. However, 
approximately close wavebands could be used to calculate indices. 

Numerous VIs have been proposed for estimating canopy chlorophyll or 
nitrogen content [7]. Specifically, the red-edge region has been often used for 
estimating chlorophyll and nitrogen content. Vegetation indices often combine a 
near-infrared spectral band, representing scattering of radiation by a canopy, with a 
visible spectral band, representing absorption by chlorophyll. Problem with using 
the red spectral bands is the strong absorption by chlorophyll resulting into less 
sensitivity of such indices. Due to lower absorption by chlorophyll in the red-edge 
region, the use of such a band reduces the saturation effect, and the reflectance still 
remains sensitive to chlorophyll absorption at its moderate-to-high values [20]. For 
detecting plant stress the position of the red-edge inflection point is of very high 
significance [28]. The red-edge position has often been used as an estimate for 
chlorophyll content. With the number of red-edge bands of Sentinel-2 bands, the 
red-edge position can be derived by applying a simple linear model to the 
red-infrared slope [23].  

Another type of index based on the MERIS red-edge bands is the MERIS 
terrestrial chlorophyll index, MTCI [9, 10]. This index has been applied 
successfully for many applications. It has been shown in various studies that ratio 
indices and/or normalized difference indices using red-edge bands perform very 
well in estimating chlorophyll or nitrogen content. Authors such as A. Gitelson 
[22] presented a ratio index based on a NIR band (e.g., at 800 nm) and a red-edge 
band (e.g., at 710 nm) for estimating chlorophyll content: the so-called red-edge 
chlorophyll index  

(CIred-edge = R800/R710−1). Similarly, a so-called green chlorophyll 
index (CIgreen = R800/R550−1) has been proposed. Major advantages are their 
linearity with chlorophyll content and absence of the saturation effect. In literature, 
various ratio indices can be found with slightly different band settings, often 
depending on the available sensor. The indices most often mentioned in the 
literature with significant results and suitable for calculation on Sentinel-2 bands 
are listed in Table 1. 
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Table 1. Vegetation indices for chlorophyll and nitrogen estimation, suitable  
for calculation with Sentinel-2 bands 
 

Index Formulae References 
REP (((R670 + R780)/2 − R700)/(R740 − R700))*40+ R700 [6, 7, 23, 44, 45] 

MTCI (R754 - R709) / (R709 − R681) [6, 7, 9, 10, 44] 
CI red edge (R780/R709) − 1 [6, 14, 18, 22, 44] 

CI green  (R780/R550) − 1 [6, 7, 20] 

NDRE (R740 − R705) / (R740 + R705) [20, 41] 
NDRE1 (R780 − R705) / (R780 + R705) [20, 41] 
CCCI ((R790−R720)/(R790+R720))/((R800−R670)/(R800+R670)) [2] 

 
Biomass estimation 
Measurement of various crop canopy variables during the growing season 

provides an opportunity for improving grain yields and quality by site-specific 
application of fertilizers and pesticides. Important variables in this context are the 
leaf area and total aboveground biomass because they are clear indicator of 
vegetation development and health [14, 31, 36, and 38]. The biophysical and 
biochemical parameters of plants are at the focus of many applications based on 
remote sensing techniques. Maps of those parameters are of particular interest to 
assist in the decision-making process in the context of agriculture. The biomass is 
one of the most important biophysical surface parameter attracting interest in wider 
researches concerned with earth observation data. The remote sensing techniques 
could provide repeated measures from a field without destructive sampling of the 
crop, which can provide valuable information for agricultural activities [27]. The 
repeated and consistent measurements result in the availability of time series data 
for a longer period of time. The availability of time series data for longer periods 
from different sensors helps the modern farmer to get current view on how a parcel 
performs over the growing season. 

Spectral VIs derived from spectral reflectance have been shown to be 
useful for indirectly obtaining crop information such as biomass, photosynthetic 
efficiency, productivity potential, leaf chlorophyll content and N concentration 
[40]. Recent studies by [5, 11] have demonstrated the usefulness of optical indices 
from remote sensing in the assessment of vegetation biophysical and biochemical 
variables, including above ground biomass. In order to investigate the physical and 
biochemical parameters of a crop should be used VIs which are sensitive to the 
target characteristics of the crop parameters. Big challenge is also to evaluate the 
seasonal patterns of the VI and to determine which VIs are the most robust for 
detecting the biomass of the crop within a field over the growing season.  
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Vegetation indices for biomass estimation 
Remote sensing data and techniques have already proven to be used as a 

relevant tool for crop inventory and monitoring purposes [24, 25]. Among the 
different issues, determining the crop status, condition and biomass are some of the 
important issues in which remote sensing applications have been used [27]. 
Besides, crop parameters, such as leaf area index (LAI), leaf chlorophyll content, 
leaf water content, and canopy cover have been successfully measured using 
remote sensing technology, especially using spectral VIs [25, 26, and 29]. 

The simple ratio (SR) and the superior normalized difference vegetation 
index (NDVI), both calculated from measurements of the reflected light from the 
red and near infrared bands, have long been used as indirect measurement of 
biomass and crop yield, including that of wheat  [14, 26, 27, and 38]. NDVI 
combining a near-infrared spectral band, representing scattering of radiation by a 
canopy, with a red spectral band, representing absorption by chlorophyll, saturates 
with higher LAI. This problem occurs because the red spectral band has very 
strong absorption by chlorophyll and that results into less sensitivity after certain 
value of LAI of such indices. Due to lower absorption by chlorophyll in the red-
edge region, the use of such a band reduces the saturation effect, and the 
reflectance still remains sensitive to chlorophyll absorption at its moderate-to-high 
values. Therefore, the red edge inflection point [18] and several NIR/NIR indices 
have been proven to offer more reliable signals in high biomass-producing areas 
like Europe. However, some indices concentrate on the visible range of the 
reflection spectrum. Because they are primarily influenced by the absorbance 
capacity of chlorophyll, VIS-based indices are presumed to identify green 
vegetation over soil, [17, 34]. 

NDVI have during the past decades been based on either broad wavebands 
(50–100 nm scale) from, e.g. the satellite-based Landsat Thematic Mapper using 
the TM-spectrometer (TM), or short wavebands (10 nm scale) from field-based 
spectroradiometers like FieldSpec (ASD Inc, PANalytical), CropScan MSR87 and 
MSR16 (CropScan, USA). The broadband VIs use, in principle, average spectral 
information over a wide range resulting in loss of critical spectral information 
available in specific narrow bands. To bridge that gap ESA’s upcoming satellite 
Sentinel-2 (S2) aims to replace and improve the old generation of high resolution 
satellite sensors Landsat and SPOT, but with improved spectral capabilities. Of 
specific interest for remote sensing applications for agriculture monitoring are two 
new bands in the red edge (B5 at 705 nm and B6 at 740 nm) [11]. The indices most 
often mentioned in the literature with significant results and suitable for calculation 
on Sentinel-2 bands are listed in Table 2. 
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Table 2. VIs for biomass estimation, suitable for calculation with Sentinel-2 bands 
 

Index Formulae References 
NDVI (R780 – R670) / (R780 + R670) [26, 37, 38] 

NDVI1 (R740 – R705) / (R740 + R705) [26] 
NDVI2 (R780 – R705) / (R780 + R705) [26] 

SR 

R740 / R665 

[14] 
R783 / R665 
R783 / R740 
R783 / R705 
R945 / R865 

REP 700 + 40*((R670 + R780)/2 − R700) / (R740 − R700) [6, 7, 23, 44, 45] 
VARI (R550 − R650) / (R550 + R650 − R470) [14] 

 
LAI and fAPAR estimation 
With the advancement of RS technologies more scientific teams has started 

exploring satellite data to derive biophysical estimates for cereals and more 
specifically – winter wheat. Although many scientists have tried to transform their 
VIs in such a way that a linear relationship can be established between VI and the 
variable of interest, an exponential function still appears to be the best 
approximation [12]. The classical broadband vegetation indices typically use a 
spectral band in the red and one in the NIR. As both red and NIR reflectance 
saturate when LAI increases, the VIs become insensitive for dense canopies [25].  

The Normalised Difference Vegetation Index (NDVI) [36] which is 
currently the most widely used VI as a measure for many variables. Although VIs 
such as the NDVI were primarily developed for the purpose of LAI retrieval they 
have also been argued to be capable of canopy chlorophyll content estimations 
[30]. Some authors have focused their efforts to linearize the relationship between 
the VIs in question and LAI [13]. On test-fields of winter wheat and rapeseed the 
DSIR760–R739 appeared to be the best estimate of LAI above 1.5 in terms of 
sensitivity compared to few other VIs. 

 
Fraction of vegetation cover (fCover) estimation 

 

Fraction of vegetation cover (fCover), or the percentage of soil surface 
covered by plant foliage (usually assessed vertically), is an important measurement 
of crop establishment and early vigor [35]. This variable can be related with the 
interception of solar radiation from crop canopies and thus with their production 
potential. Some times in the agronomic practice vegetation fraction as assessment 
from different view angle may be of interest. For example [3] suggest that an 
estimation of solar radiation interception at a 45° view is more appropriate because 
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it better represents an average sun angle. For wheat, however, the percent 
interception of total radiation changes little with time of day (sun angle) [3].   

Typical approaches to measure fCover in the field are point quadrat 
techniques, visual assessment and digital analysis of photographs. These methods 
however do not have sufficient resolution or are laborious and time consuming. 
Thus, remote estimation through spectral vegetation indices is useful alternative. 
NDVI has long been regarded as a measure of the quantity of green vegetation 
covering the soil. [21] showed that NDVI is insensitive of fCover change in wheat 
when fCover > 60 %. Based on simulated MODIS bands these authors propose a 
simple index for estimation of wheat fCover – the Vegetation Index green  
(VI green). The relationship of this index with fCover is linear and r2 > 0.91. Even 
better results are achieved with Visible Atmospherically Resistant Index green 
(VARI green) where blue band is used to reduce atmospheric effects. 
Modifications of NDVI have also been proposed. For example Wide Dynamic 
Range Vegetation Index (WDRVI) [19] outperforms VARI green in maize and 
soybean crops. Vegetation indices incorporating correction for soil reflectance also 
proved to be useful for wheat fCover estimation. 

 
Table 3. Vegetation indices for chlorophyll and nitrogen estimation, suitable for 
calculation with Sentinel-2 bands 
 

Index Formulae References 
Red edge NDVI (RNIR – Rred edge) / (RNIR + Rred edge) [19] 

WDRVI (0.3 * RNIR – Rred) / (0.3 * RNIR + Rred) [19] 
VARI green (Rgreen – Rred) / (Rgreen + Rred – Rblue) [21] 

VI green (Rgreen – Rred) / (Rgreen + Rred) [21] 
 

Photosynthesis estimates 
Photosynthesis is the most important process in plants, but its measurement 

by gas exchange method (most accurate for now) is time consuming and requires 
specialized equipment. Vegetation products derived from terrestrial, airborne or 
satellite data for reflective characteristics of plants are more often used in 
agricultural practices to assess plant status and take the appropriate cultivation 
action. 

The Photochemical Reflectance Index (PRI) (Table 4), calculated as 
(R531 – R570) / (R531 + R570) measures the activity of the xanthophyll cycle in 
plants – a process competitive of the electron transport in Photosystem II and thus 
closely correlated to the photosynthesis.  

Articles that reported relationships between remotely sensed PRI and the 
following plant physiological variables – Light Use Efficiency (LUE) / Radiation 
Use Efficiency (RUE), CO2 uptake (Photosynthesis), actual photochemical 
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efficiency of Photosystem II – ΦPSII = ΔF/Fm′ and Non photochemical quenching 
(NPQ) were reviewed. For each article we registered the main features of the study, 
and also the correlation coefficient (Pearson's r) and the coefficient of 
determination (R2) as indicators of the strength of each presented relationship. 

Plants were grown at fields or in greenhouses and were exposed to 
different stresses (water deficit, nitrogen deficiency, cadmium pollution, etc.). 
Observations were organized on diurnal or through the whole vegetation cycle 
bases. Measurements were made on different plant organization levels–leaf, 
canopy or ecosystem ("canopy" refers to either a single plant or a monospecific 
stand, and "ecosystem" refers to a mixed-species stand). The index PRI isn’t 
suitable for calculation using Sentinel-2 imagery and bands combinations aren’t 
possible. On this stage no modeling of photosynthesis parameters is planned. For 
future research we see the exploration of those parameters and the vegetation 
fluorescence as a very promising initiative, especially in line with the Sentinel-3 
mission and the development of FLuorescence EXplorer (FLEX) from ESA. 
 
Table 4. Vegetation indices for photosynthesis parameters estimation, suitable 
for calculation with Sentinel-2 bands 
 

Index Formulae References 

PRI (R531 – R570)/(R531 + R570) 

wheat (Magney et al., 2014); barley (Filella et al., 
1996 and Sun et al., 2013); rice (Inoue et al., 2008); 
maize (Cheng et al., 2013, Panigada et al., 2014, 
Rossini et al., 2013, Rossini et al., 2015); soybean 
(Inamullah and Isoda, 2005, Xue et al., 2014); 
sunflower (Magney et al., 2014, Peñuelas et al., 1994); 
grass (Rossini et al., 2012) and different species 
including herbaceous annuals, deciduous perennials 
and evergreen perennials (Gamon et al., 1997) 
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ОБЗОР НА ИНДЕКСИТЕ И МЕТОДИТЕ 
ЗА ИЗСЛЕДВАНЕ НА БИОФИЗИЧНИ ПРОМЕНЛИВИ 

НА ЗЕМЕДЕЛСКИ КУЛТУРИ 
 

И. Каменова, Л. Филчев, И. Илиева 
 

  Резюме 
В настоящата статия е представен кратък обзор на вегетационните 

индекси и методите за оценка на основните биофизични променливи на 
земеделски култури. Направена е характеристика на основните вегетационни 
индекси, използвани при оценката на азот и хлорофил, биомаса, листов 
индекс и fAPAR, fCover и фотосинтеза. 
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